Columnize CSVs
Convert comma-separated values into a dataset format of rows and columns that can be easily analyzed and manipulated.
Parameters
- Source Column: The column name containing the comma-separated values you want to convert. Defaults to
content
. - Delimiter: The delimiter used to separate cells in the comma-separated value. Defaults to
,
.
Usage
To use the Columnize CSVs transformation, you will need to follow these steps:
- Specify the Source Column parameter with the name of the column that contains the text data you want to columnize.
- Specify the Delimiter parameter used to separate cells, default is
,
. - Run the transformation by clicking the Save and Run Transforms button.
Example 1: Tab-separated Values
Suppose we have a dataset with the following tab-separated values (TSV) data in the 'content' column:
product_id product_name price
1 Laptop 899.99
2 Tablet 499.99
3 Smartphone 699.99
To columnize the TSV data, configure the transformation as follows:
- Source Column: content
- Delimiter: \t (tab character)
The resulting structured dataset would look like this:
product_id | product_name | price
1 | Laptop | 899.99
2 | Tablet | 499.99
3 | Smartphone | 699.99
Example 2: Custom Delimiter
Suppose we have a dataset with the following data using a custom delimiter (pipe |
character) in the 'content' column:
order_id|customer_id|product_id|quantity
1001|1|1|2
1002|2|3|1
1003|3|2|4
To columnize the data with a custom delimiter, configure the transformation as follows:
- Source Column: content
- Delimiter: |
The resulting structured dataset would look like this:
order_id | customer_id | product_id | quantity
1001 | 1 | 1 | 2
1002 | 2 | 3 | 1
1003 | 3 | 2 | 4
Example 3: Data with Quotes
Suppose we have a dataset with the following data using quotes for values containing commas, stored in the 'content' column:
ID,Name,Address
1,John Doe,"123 Main St, Suite 400"
2,Jane Smith,"456 Elm St, Apartment 20A"
To columnize the data containing quotes, configure the transformation as follows:
- Source Column: content
- Delimiter: ,
The resulting structured dataset would look like this:
ID | Name | Address
1 | John Doe | 123 Main St, Suite 400
2 | Jane Smith | 456 Elm St, Apartment 20A
The Columnize CSV transformation correctly handles values enclosed in quotes, ensuring accurate parsing of the dataset.
Updated over 1 year ago